MGL-fitting-mixed.Rmd
We consider an earthquake loss data set concerning the Chinese mainland, which contains risk information on 291 earthquake events with magnitude greater than 4.0 from 1990 to 2015.
The data set contains:
m.norm <- MGL.mle.mixed(obs = y, U = U, U_ = U_, umin = umin, f = f,
copula = "Normal", method = "L-BFGS-B",
initpar = 0.2)
m.t <- MGL.mle.mixed(obs = y, U = U, U_ = U_, umin = umin, f = f,
copula = "t", method = "L-BFGS-B",
initpar = c(0.1,3))
m.gumbel <- MGL.mle.mixed(obs = y, U = U, U_ = U_, umin = umin, f = f,
copula = "Gumbel", method = "L-BFGS-B",
initpar = c(2))
m.MGLMGA180 <- MGL.mle.mixed(obs = y, U = U, U_ = U_, umin = umin, f = f,
copula = "MGL180", method = "L-BFGS-B",
initpar = c(2))
m.MGB2 <- MGL.mle.mixed(obs = y, U = U, U_ = U_, umin = umin, f = f,
copula = "MGB2", method = "L-BFGS-B",
initpar = c(1, 4, 0.4))
m.MGLEV180 <- MGL.mle.mixed(obs = y, U = U, U_ = U_, umin = umin, f = f,
copula = "MGL-EV180", method = "L-BFGS-B",
initpar = c(0.2))
recap <- function(x){
res <- c(alpha = x$estimates,
se = x$se,
loglike = x$loglike,
AIC = x$AIC, BIC = x$BIC)
if(length(res) < 6)
res <- c(res[1], NA, NA,res[2], NA, NA, res[3:5])
if (length(res) > 6 & length(res) < 9)
res <- c(res[1:2], NA, res[3:4], NA, res[5:7])
res <- as.matrix(res)
colnames(res) <- x$copula$name
res}
res.all <- round(cbind(recap(m.norm),
recap(m.t),
recap(m.gumbel),
recap(m.MGLMGA180),
recap(m.MGB2),
recap(m.MGLEV180)
), 4)
out.com <- t(res.all)
out.com <- out.com[order(out.com[,9], decreasing = T),]
knitr::kable(out.com, digits = 3)
round(out.com, 2)